Approximation theory for matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Theory for Matrices

There are many situations in which it is desirable to evaluate a function of a matrix. For instance, in lattice quantum field theory it is sometimes desirable to evaluate the square root of a discretised Dirac operator D/ in order to calculate the effects of varying the number of fermionic flavours [1,2,3,4,5], or to construct a good approximation to Neuberger’s operator for GinspargWilson ferm...

متن کامل

Approximation of matrices

We improve here two results from the preprints [DK], [AFKK] on approximating matrices by random submatrices. We use a construction of a random subset of a finite set, which is different from what was suggested in [AFKK]. Instead of taking a random q-element subset of an n-element set, we consider independent {0, 1}-valued random variables δ1, . . . , δn, taking value 1 with probability δ = q/n....

متن کامل

Approximation Results for Reflectionless Jacobi Matrices

We study spaces of reflectionless Jacobi matrices. The main theme is the following type of question: Given a reflectionless Jacobi matrix, is it possible to approximate it by other reflectionless and, typically, simpler Jacobi matrices of a special type? For example, can we approximate by periodic operators?

متن کامل

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Analysis of Some Krylov Subspace Methods for Normal Matrices via Approximation Theory and Convex Optimization

Krylov subspace methods are strongly related to polynomial spaces and their convergence analysis can often be naturally derived from approximation theory. Analyses of this type lead to discrete min-max approximation problems over the spectrum of the matrix, from which upper bounds of the relative Euclidean residual norm are derived. A second approach to analyzing the convergence rate of the GMR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B - Proceedings Supplements

سال: 2004

ISSN: 0920-5632

DOI: 10.1016/s0920-5632(03)02466-6